## **Forklift Alternators and Starters**

Forklift Starters and Alternators - A starter motors today is typically a permanent-magnet composition or a series-parallel wound direct current electrical motor with a starter solenoid installed on it. As soon as current from the starting battery is applied to the solenoid, mainly via a key-operated switch, the solenoid engages a lever which pushes out the drive pinion which is situated on the driveshaft and meshes the pinion using the starter ring gear which is found on the flywheel of the engine.

The solenoid closes the high-current contacts for the starter motor, which starts to turn. After the engine starts, the key operated switch is opened and a spring within the solenoid assembly pulls the pinion gear away from the ring gear. This particular action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by an overrunning clutch. This permits the pinion to transmit drive in only one direction. Drive is transmitted in this particular manner through the pinion to the flywheel ring gear. The pinion continuous to be engaged, like for example as the operator fails to release the key when the engine starts or if the solenoid remains engaged in view of the fact that there is a short. This actually causes the pinion to spin independently of its driveshaft.

The actions discussed above will prevent the engine from driving the starter. This important step stops the starter from spinning so fast that it can fly apart. Unless modifications were done, the sprag clutch arrangement would preclude making use of the starter as a generator if it was employed in the hybrid scheme discussed earlier. Normally an average starter motor is designed for intermittent use which will preclude it being used as a generator.

Thus, the electrical components are designed to operate for roughly under 30 seconds in order to prevent overheating. The overheating results from too slow dissipation of heat because of ohmic losses. The electrical parts are meant to save weight and cost. This is truly the reason nearly all owner's guidebooks for automobiles suggest the operator to pause for a minimum of 10 seconds after every ten or fifteen seconds of cranking the engine, when trying to start an engine that does not turn over at once.

During the early 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Prior to that time, a Bendix drive was used. The Bendix system works by placing the starter drive pinion on a helically cut driveshaft. As soon as the starter motor begins turning, the inertia of the drive pinion assembly allows it to ride forward on the helix, therefore engaging with the ring gear. As soon as the engine starts, the backdrive caused from the ring gear allows the pinion to exceed the rotating speed of the starter. At this moment, the drive pinion is forced back down the helical shaft and hence out of mesh with the ring gear.

The development of Bendix drive was made in the 1930's with the overrunning-clutch design called the Bendix Folo-Thru drive, developed and introduced in the 1960s. The Folo-Thru drive has a latching mechanism along with a set of flyweights within the body of the drive unit. This was better for the reason that the typical Bendix drive used in order to disengage from the ring when the engine fired, though it did not stay functioning.

The drive unit if force forward by inertia on the helical shaft when the starter motor is engaged and starts turning. Afterward the starter motor becomes latched into the engaged position. As soon as the drive unit is spun at a speed higher than what is attained by the starter motor itself, like for instance it is backdriven by the running engine, and afterward the flyweights pull outward in a radial manner. This releases the latch and permits the overdriven drive unit to become spun out of engagement, thus unwanted starter disengagement can be avoided before a successful engine start.